Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 25(12): 1277-1284, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37815775

RESUMEN

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are polymorphic, adherent cells with the capability to stimulate tissue regeneration and modulate immunity. MSCs have been broadly investigated for potential therapeutic applications, particularly immunomodulatory properties, wound healing and tissue regeneration. The exact physiologic role of MSCs, however, remains poorly understood, and this gap in knowledge significantly impedes the rational development of therapeutic cells. Here, we considered interferon γ (IFN-γ) and tumor necrosis factor alpha (TNF-α), two cytokines likely encountered physiologically and commonly used in cell manufacturing. For comparison, we studied interleukin-10 (IL-10) (anti-inflammatory) and interleukin-4 (IL-4) (type 2 cytokine). METHODS: We directly assessed the effects of these cytokines on bone marrow MSCs by comparing RNA Seq transcriptional profiles. Western blotting and flow cytometry were also used to evaluate effects of cytokine priming. RESULTS: The type 1 cytokines (IFN-γ and TNF-α) induced striking changes in gene expression and remarkably different profiles from one another. Importantly, priming MSCs with either of these cytokines did not increase variability among multiple donors beyond what is intrinsic to non-primed MSCs from different donors. IFN-γ-primed MSCs expressed IDO1 and chemokines that recruit activated T cells. In contrast, TNF-α-primed MSCs expressed genes in alternate pathways, namely PGE2 and matrix metalloproteinases synthesis, and chemokines that recruit neutrophils. IL-10 and IL-4 priming had little to no effect. CONCLUSIONS: Our data suggest that IFN-γ-primed MSCs may be a more efficacious immunosuppressive therapy aimed at diseases that target T cells (ie, graft-versus-host disease) compared with TNF-α-primed or non-primed MSCs, which may be better suited for therapies in other disease settings. These results contribute to our understanding of MSC bioactivity and suggest rational ex vivo cytokine priming approaches for MSC manufacturing and therapeutic applications.


Asunto(s)
Citocinas , Células Madre Mesenquimatosas , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-4/farmacología , Interferón gamma , Quimiocinas
2.
PLoS Pathog ; 17(6): e1009674, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34181694

RESUMEN

HIV associated immune activation (IA) is associated with increased morbidity in people living with HIV (PLWH) on antiretroviral therapy, and remains a barrier for strategies aimed at reducing the HIV reservoir. The underlying mechanisms of IA have not been definitively elucidated, however, persistent production of Type I IFNs and expression of ISGs is considered to be one of the primary factors. Plasmacytoid DCs (pDCs) are a major producer of Type I IFN during viral infections, and are highly immunomodulatory in acute HIV and SIV infection, however their role in chronic HIV/SIV infection has not been firmly established. Here, we performed a detailed transcriptomic characterization of pDCs in chronic SIV infection in rhesus macaques, and in sooty mangabeys, a natural host non-human primate (NHP) species that undergoes non-pathogenic SIV infection. We also investigated the immunostimulatory capacity of lymph node homing pDCs in chronic SIV infection by contrasting gene expression of pDCs isolated from lymph nodes with those from blood. We observed that pDCs in LNs, but not blood, produced high levels of IFNα transcripts, and upregulated gene expression programs consistent with T cell activation and exhaustion. We apply a novel strategy to catalogue uncharacterized surface molecules on pDCs, and identified the lymphoid exhaustion markers TIGIT and LAIR1 as highly expressed in SIV infection. pDCs from SIV-infected sooty mangabeys lacked the activation profile of ISG signatures observed in infected macaques. These data demonstrate that pDCs are a primary producer of Type I IFN in chronic SIV infection. Further, this study demonstrated that pDCs trafficking to LNs persist in a highly activated state well into chronic infection. Collectively, these data identify pDCs as a highly immunomodulatory cell population in chronic SIV infection, and a putative therapeutic target to reduce immune activation.


Asunto(s)
Células Dendríticas/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Animales , Cercocebus atys , Perfilación de la Expresión Génica , Macaca mulatta , RNA-Seq , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...